Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 2926-2938, 2023.
Article in Chinese | WPRIM | ID: wpr-981241

ABSTRACT

Dracaena marginata is a widely cultivated horticultural plant in the world, which has high ornamental and medicinal value. In this study, the whole genome of leaves from D. marginata was sequenced by Illumina HiSeq 4000 platform. The chloroplast genome were assembled for functional annotation, sequence characteristics and phylogenetic analysis. The results showed that the chloroplast genome of D. marginata composed of four regions with a size of 154 926 bp, which was the smallest chloroplast genome reported for Dracaena species to date. A total of 132 genes were identified, including 86 coding genes, 38 tRNA genes and 8 rRNA genes. Codon bias analysis found that the codon usage bias was weak and there was a bias for using A/U base endings. 46 simple sequence repeat and 54 repeats loci were detected in the chloroplast genome, with the maximum detection rate in the large single copy region and inverted repeat region, respectively. The inverted repeats boundaries of D. marginata and Dracaena were highly conserved, whereas gene location differences occurred. Phylogenetic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, which was the closest relationship and conformed to the morphological classification characteristics. The analysis of the chloroplast genome of D. marginata provides important data basis for species identification, genetic diversity and chloroplast genome engineering of Dracaena.


Subject(s)
Phylogeny , Dracaena , Genome, Chloroplast/genetics , Base Sequence , Genes, Plant
2.
Chinese Journal of Biotechnology ; (12): 2914-2925, 2023.
Article in Chinese | WPRIM | ID: wpr-981240

ABSTRACT

Pellionia scabra belongs to the genus Pellionia in the family of Urticaceae, and is a high-quality wild vegetables with high nutritional value. In this study, high-throughput techniques were used to sequence, assemble and annotate the chloroplast genome. We also analyzed its structure, and construct the phylogenetic trees from the P. scabra to further study the chloroplast genome characteristics. The results showed that the chloroplast genome size was 153 220 bp, and the GC content was 36.4%, which belonged to the typical tetrad structure in P. scabra. The chloroplast genome encodes 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes in P. scabra. Among them, 15 genes contained 1 intron, 2 genes contained 2 introns, and rps12 had trans-splicing, respectively. In P. scabra, chloroplast genomes could be divided into four categories, including 43 photosynthesis, 64 self-replication, other 7 coding proteins, and 4 unknown functions. A total of 51 073 codons were detected in the chloroplast genome, among which the codon encoding leucine (Leu) accounted for the largest proportion, and the codon preferred to use A and U bases. There were 72 simple sequence repeats (SSRs) in the chloroplast genome of P. scabra, containing 58 single nucleotides, 12 dinucleotides, 1 trinucleotide, and 1 tetranucleotide. The ycf1 gene expansion was present at the IRb/SSC boundary. The phylogenetic trees showed that P. scabra (OL800583) was most closely related to Elatostema stewardii (MZ292972), Elatostema dissectum (MK227819) and Elatostema laevissimum var. laevissimum (MN189961). Taken together, our results provide worthwhile information for understanding the identification, genetic evolution, and genomics research of P. scabra species.


Subject(s)
Phylogeny , Genome, Chloroplast/genetics , Genomics , Chloroplasts/genetics , Codon , Urticaceae/genetics
3.
Chinese Journal of Biotechnology ; (12): 1953-1964, 2022.
Article in Chinese | WPRIM | ID: wpr-927830

ABSTRACT

Reynoutria japonica Houtt., belonging to Polygoneae of Polygonaceae, is a Chinese medicinal herb with the functions of draining dampness and relieving jaundice, clearing heat and detoxifying, dispersing blood stasis and relieving pain, and relieving cough and resolving phlegm. In this study, we carried out high-throughput sequencing for the chloroplast genome sequences of five cultivars of R. japonica and analyzed the genome structure and variations. The chloroplast genomes of the five R. japonica cultivars had two sizes (163 376 bp and 163 371 bp) and a typical circular tetrad structure composed of a large single-copy (LSC) region of 85 784 bp, a small single-copy (SSC) region of 18 616 bp, and a pair of inverted repeat (IR) regions (IRa/IRb) which are spaced apart. A total of 161 genes were obtained by annotation, which consisted of 106 protein-coding genes, 10 rRNA-coding genes, and 45 tRNA-coding genes. The total GC content was 36.7%. Specifically, the GC content in the LSC, SSC, and IR regions were 34.8%, 30.7%, and 42.7%, respectively. Comparison of the whole chloroplast genome among the five cultivars showed that trnk-UUU, rpoC1, petD, rpl16, ndhA, and rpl12 in coding regions had sequence variations. In the phylogenetic tree constructed for the 11 samples of Polygoneae, the five cultivars of R. japonica clustered into one clade near the root and was a sister group of Fallopia multiflora (Thunb.).


Subject(s)
Base Composition , Genome, Chloroplast/genetics , Open Reading Frames , Phylogeny , Reynoutria
4.
China Journal of Chinese Materia Medica ; (24): 5260-5269, 2021.
Article in Chinese | WPRIM | ID: wpr-921671

ABSTRACT

Gentiana is an important but complicated group in Gentianaceae. The genus covers numerous medicinal plants which are difficult to be identified. In the present study, several medicinal species in Gentiana from Yunnan province, including G. rigescens, G.rhodantha, and G. delavayi, were sequenced using the Illumina HiSeq 2500 system. Three complete chloroplast genome sequences were obtained after assembly and annotation. According to several published genome sequences of G. crassicaulis, the DNA super-barcoding of species in Gentiana was preliminarily carried out. The results revealed that chloroplast genomes of the three species were conservative with short lengths(146 944, 148 992, and 148 796 bp, respectively). The genomes encoded 114 genes, including 78 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 2 pseudogenes. Furthermore, these medicinal species in Yunnan province were identified using DNA super-barcoding based on chloroplast genomes. The results showed that the Gentiana species could be gathered into monophyletic branches with a high support value(100%). It indicated that DNA super-barcoding possessed obvious advantages in discriminating species in complicated genera. This study is expected to provide a scientific basis for the identification, utilization, and conservation of Gentiana species.


Subject(s)
China , DNA , Genome, Chloroplast/genetics , Gentiana/genetics , Phylogeny
5.
Biol. Res ; 53: 21, 2020. tab, graf
Article in English | LILACS | ID: biblio-1124206

ABSTRACT

BACKGROUND: Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. RESULTS: We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. CONCLUSIONS: The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.


Subject(s)
Polymorphism, Genetic/genetics , Genome, Plant/genetics , Liriodendron/genetics , Genome, Chloroplast/genetics , DNA Primers/genetics , DNA, Plant/genetics , Microsatellite Repeats , Alleles , Whole Genome Sequencing , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL